У прямій трикутній призмі сторони основ дорівнюють 13 см; 14 см; 15 см. Через бічне ребро призми і середню за довжиною висоту основи проведено переріз, площа якого дорівнює 60 см2. Знайти об'єм призми.
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
5) Пусть H - высота призмы. Так как призма прямая, то ее боковыми гранями будут прямоугольники, одна из сторон которых - это высота призмы, а другие стороны - соответствующие стороны основания призмы. Пусть a = 6, b = 25, c = 29 - стороны основания.
Sбоковой поверх. = Н*a + H*b+ H*c = H * (a+b+c) = 600, откуда
Н = 600/(a+b+c) = 600/(25+29+6) = 600/60 = 10.
Объем призмы = площадь основания * высоту, в основании лежит треугольник и его площадь вычислим по формуле Герона:
S = √p * √(p-a) * √(p-b) * √(p-c), где р - полупериметр, р = 60/2 = 30.
6) В основании такой пирамиды лежит квадрат. Он будет вписан в окружность радиуса R. Диаметр окружности равен диагонали квадрата, а диагональ равна стороне квадрата, умноженной на √2.
Тогда R = 1/2 диагонали = (√2/2) * сторону квадрата = 6√2/2 = 3√2.
Обозначим высоту пирамиды как H, по условию она совпадает
с высотой конуса (она вписана в него, и их вершины сходятся в одной точке, а образующая конуса совпадает с ребром пирамиды).
Рассмотрим Δ, содержащий боковую сторону пирамиды, ее высоту и радиус окружности. Данный Δ является прямоугольным, ведь высота ⊥ радиусу, а боковая сторона (боковое ребро) будет при этом гипотенузой. По теореме Пифагора: (боковое ребро)² = радиус² + (высота пирамиды)² ⇒ 12² = (3√2)² + Н² ⇒ 144 = 18 + Н² ⇒ Н = √126.
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
простая подстановка дает
(R + 11/2)/(R - 11/2) = 3/2; => R = 55/2;
5) Пусть H - высота призмы. Так как призма прямая, то ее боковыми гранями будут прямоугольники, одна из сторон которых - это высота призмы, а другие стороны - соответствующие стороны основания призмы. Пусть a = 6, b = 25, c = 29 - стороны основания.
Sбоковой поверх. = Н*a + H*b+ H*c = H * (a+b+c) = 600, откуда
Н = 600/(a+b+c) = 600/(25+29+6) = 600/60 = 10.
Объем призмы = площадь основания * высоту, в основании лежит треугольник и его площадь вычислим по формуле Герона:
S = √p * √(p-a) * √(p-b) * √(p-c), где р - полупериметр, р = 60/2 = 30.
S = √30 *√(30-6) *√(30-25) *√(30-29) = √30*√24*√5 = √144*√25 =
12*5 = 60, тогда объем = 60 * 10 = 600 см³
6) В основании такой пирамиды лежит квадрат. Он будет вписан в окружность радиуса R. Диаметр окружности равен диагонали квадрата, а диагональ равна стороне квадрата, умноженной на √2.
Тогда R = 1/2 диагонали = (√2/2) * сторону квадрата = 6√2/2 = 3√2.
Обозначим высоту пирамиды как H, по условию она совпадает
с высотой конуса (она вписана в него, и их вершины сходятся в одной точке, а образующая конуса совпадает с ребром пирамиды).
Рассмотрим Δ, содержащий боковую сторону пирамиды, ее высоту и радиус окружности. Данный Δ является прямоугольным, ведь высота ⊥ радиусу, а боковая сторона (боковое ребро) будет при этом гипотенузой. По теореме Пифагора: (боковое ребро)² = радиус² + (высота пирамиды)² ⇒ 12² = (3√2)² + Н² ⇒ 144 = 18 + Н² ⇒ Н = √126.
Vконуса = 1/3 * Sоснования * высоту = 1/3 * πR²*H = 1/3 * π *(3√2)²*√126 =
18/3 * π * √126 = 6π√126 = 6π*3√14 = 18π√14 см³