В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
AndreyMiix
AndreyMiix
20.02.2021 16:33 •  Геометрия

У прямокутнику ABCD кут ABC на 20 градусів більший за кут DAC. Знайдіть кут ACB і кут ACD

Показать ответ
Ответ:
olgamorozkina19
olgamorozkina19
14.07.2021 23:51

ответ: 80.

Объяснение:

Построим координатную плоскость и нанесем точки А,В,С.  (смотри чертёж).

Чтобы найти площадь при таких данных, воспользуемся формулой Герона:

S = √p(p-a)(p-b)(p-c), где  a, b и  c - стороны треугольника р=(a+b+c)/2 - полупериметр треугольника.

Но есть более простая формула:

S=1/2|(x2-x1)(y3-y1)-(x3-x1)(y2-y1|);  (|  | - по модулю);

Обозначим  точки 1 - А; 2 - В; 3 - С.

Тогда S= 1/2| (4-(-6))(-8-2)-(2-(-6))(8-(-2))|=1/2| (10*(-6))-(10*10)|=1/2| (-60-100) |= 1/2 |-160|=1/2* 160=80.


найдите площадь треугольника ABC Если а) А (-6; -2), В (4; 8), С (2; -8); б) A (-2; -2), B (1; 1), C
0,0(0 оценок)
Ответ:
CheIIOVek
CheIIOVek
07.03.2020 05:50

Теорема о пересечении серединных перпендикуляров к сторонам треугольника

В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.

Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.

По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.

Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.

Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.

Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота