У прямокутний трикутник ABC з прямим кутом С вписуються усі можливі прямокутники CLXM, вершини L, X, M яких лежать на сторонах. Визначте, при якому положенні точки X довжина відрізка LM буде найменшою.
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны. Итак, в трапеции АВСД один из углов при боковой стороне СД=135°. Сумма углов, прилежащих к одной стороне трапеции, равна 180. Следовательно, угол СДА=45° Опустим из С к основанию АД перпендикуляр СН. Треугольник СНД - равнобедренный прямоугольный, т.к. угол НСД равен 90°-45°=45° Длина катетов равнобедренного прямоугольника равна половине длины гипотенузы, умноженной на √2. Или, кому привычнее, можно найти по т.Пифагора. Отсюда катеты этого треугольника равны 8,5√2 ВН₁=СН как равные перпендикуляры между параллельными прямыми. В треугольнике ВАН₁ ∠ ВАН=∠АВС=30°, как накрестлежащий при пересечении параллельных прямых секущей. ВН₁=8,5√2 АВ=ВН₁:sin(30°) АВ=17√2
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
Итак, в трапеции АВСД один из углов при боковой стороне СД=135°.
Сумма углов, прилежащих к одной стороне трапеции, равна 180. Следовательно, угол СДА=45°
Опустим из С к основанию АД перпендикуляр СН.
Треугольник СНД - равнобедренный прямоугольный, т.к. угол НСД равен 90°-45°=45°
Длина катетов равнобедренного прямоугольника равна половине длины гипотенузы, умноженной на √2.
Или, кому привычнее, можно найти по т.Пифагора.
Отсюда катеты этого треугольника равны 8,5√2
ВН₁=СН как равные перпендикуляры между параллельными прямыми.
В треугольнике ВАН₁ ∠ ВАН=∠АВС=30°, как накрестлежащий при пересечении параллельных прямых секущей.
ВН₁=8,5√2
АВ=ВН₁:sin(30°)
АВ=17√2