У прямокутному трикутнику ABC (∠C = 90°) відрізки CH, CL і CM — відповідно висота, бісектриса та медіана трикутника. Знайдіть відрізок CL, якщо CH = 6 см, CM = 10 см.
Рисунок см. во вложении. Все предыдущий автор верно описал. Просто небольшие пояснения. При продолжении меньшего катета АС до пересечения с окружностью получим точку N, причем КN - диаметр, т.к. угол КМN - прямой (KM||BC, как средняя линия). Вот и получился прям-ый тр-ик KMN, вписанный в окружность, подобный исходному, т.к угол NKM = углу ВАС( у них взаимно перпендикулярны стороны). Гипотенуза исходного тр-ка АВ=10 (по т. Пифагора), пусть KN = d - диаметр окр-ти, КМ = 4, как ср. линия исходного тр-ка. Теперь можно составить пропорцию: d/AB = KM/AC, или d/10 = 4/6 Отсюда:d = 20/3, а радиус: R = 10/3
Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
Теперь можно составить пропорцию:
d/AB = KM/AC, или d/10 = 4/6
Отсюда:d = 20/3, а радиус: R = 10/3
Окружность проходит через середины сторон треугольника.
Следовательно она является описаной окружностью для треугольника
составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника
Длины средних линий найти просто это половина сторон исходного треугольника
. Исходный треугольник 6, 25, 29
Треугольник из средних линий 3; 12,5; 14,5.
Радиус описанной окружности определяется по формуле
R =a*b*с/(4корень(p(p-a)(p-b)(p-c))).
где p=(a+b+с)/2
У нас а=3;b=12,5; c=14,5
p =(3+12,5+14,5)/2=30/2=15
Находим радиус
R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))=
= 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625