Ось цилиндра и отрезок АВ - скрещивающиеся прямые, так как эти две прямые не имеют общих точек, и не являюnся параллельными. Цитата: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой". Опустим перпендикуляры АА1 и ВВ1 на противоположные основания. Тогда плоскость АА1ВВ1 будет плоскостью, проходящей через прямую АВ параллельно оси цилиндра (так как АА1 и ВВ1 параллельны оси). Следовательно, искомое расстояние - это перпендикуляр ОН, проведенный из центра основания О к хорде АВ1 и по свойству такого перпендикуляра делящий эту хорду пополам. Найдем по Пифагору длину хорды АВ1: АВ1=√(8²-6²)=2√7. Теперь найдем из треугольника АОН по Пифагору искомое расстояние ОН. ОН=√(АО²-АН²)=√(16-7)=3. ответ: расстояние от отрезка АВ до оси цилиндра равно 3.
На другую сторону? если да, то тогда она будет равна 30 см Пусть треугольник будет АВС. Так как он правильный, то все стороны и углы равны. Медиана будет и высотой, и биссектрисой. Проведем эту медиану из верхней точки (пусть она будет BO), тогда у нас получится 2 равных прямоугольных треугольника. АО=ОС=10 корней из 3 (как половина стороны либо как катет, лежащий против угла в 30 градусов, который равен половине гипотенузы). Применяем теорему Пифагора (а^2+b^2=c^2, где а и b - катеты, а с - гипотенуза) и вуаля! получаем искомое число в 30 см.
Цитата: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой".
Опустим перпендикуляры АА1 и ВВ1 на противоположные основания. Тогда плоскость АА1ВВ1 будет плоскостью, проходящей через прямую АВ параллельно оси цилиндра (так как АА1 и ВВ1 параллельны оси). Следовательно, искомое расстояние - это перпендикуляр ОН, проведенный из центра основания О к хорде АВ1 и по свойству такого перпендикуляра делящий эту хорду пополам.
Найдем по Пифагору длину хорды АВ1: АВ1=√(8²-6²)=2√7. Теперь найдем из треугольника АОН по Пифагору искомое расстояние ОН. ОН=√(АО²-АН²)=√(16-7)=3.
ответ: расстояние от отрезка АВ до оси цилиндра равно 3.
Пусть треугольник будет АВС. Так как он правильный, то все стороны и углы равны. Медиана будет и высотой, и биссектрисой. Проведем эту медиану из верхней точки (пусть она будет BO), тогда у нас получится 2 равных прямоугольных треугольника. АО=ОС=10 корней из 3 (как половина стороны либо как катет, лежащий против угла в 30 градусов, который равен половине гипотенузы). Применяем теорему Пифагора (а^2+b^2=c^2, где а и b - катеты, а с - гипотенуза) и вуаля! получаем искомое число в 30 см.