У прямокутному трикутнику с – гіпотенуза, h – висота, проведена до гіпотенузи, a, b –
катети, a c , b c – відповідно проекції даних катетів на гіпотенузу. h = 2,4 см, b c = 3,2 см.
Встановити відповідність між невідомими елементами прямокутного трикутника (1-4) та їх
числовими значеннями (А-Д):
1) a; А) 5 см;
2) b; Б) 1,8 см;
3) a c ; В) 9,6 см;
4) с. Г) 3 см;
Д) 4 см очень С РИШЕНИЕМ
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
3.В каком случае сечение цилиндра плоскостью, параллельной его оси, является квадрат?
4.Сколько существует плоскостей, рассекающий данный цилиндр:
а) на два равных цилиндра;
б) на две равные фигуры?
КОНУС.
1.Может ли в сечении конуса плоскостью получиться равнобедренный треугольник, отличный от осевого сечения?
2.Радиус основания конуса равен 4см. осевым сечение служит прямоугольный треугольник. Найдите его площадь?
3..Высота конуса 8м, радиус основания - 6м. Найдите образующую конуса.
5.Образующая конуса равна 6м и наклонена к плоскости основания под углом 60 градусов. найдите площадь основания конуса.