а)Т.к. ∠Д=∠В=90°, то треугольники прямоугольные. В них АД=СВ- по условию,
ДВ-общая. Значит, треугольники АДВ и СВД равны по двум катетам.
№6 ΔСЕД=ΔСFД, ∠Е=∠F=90град.
СД -общая. ЕД=FД по условию, треуг. равны по катету и гипотенузе.
б) ΔАЕД=ΔВFД т.к. ∠АЕД=∠ДFВ = 90°, АД=ВД по условию,
ЕД=FД по условию. треуг. равны по гипотенузе и катету.
в) треугольники АСД И ВСД равны, т.к. составлены из двух равных, а именно АСД из треугольников АЕД И СЕД, треугольник ВСД составлен из треугольников ВFД и ДFС
№7.
а)ΔМSR=ΔNRS, в них ∠M=∠N=90°, ∠NRS=∠MSR по условию, RS-общая. Треугольники равны по острому углу и гипотенузе.
б) Если от равных треугольников NRS и MSR отнять один и тот же ΔRTS, то останутся равные треугольники, а именно
ΔRMT=ΔSNT
№8.
а)∠К=∠L=90°
ΔМLN =ΔNКМ. В них МN-общая, ∠М=∠N по условию, значит треугольники равны по острому углу и гипотенузе.
б)ΔКRМ=Δ LRN, (∠L=∠ К=90°) т.к. если от равных ΔМLN и ΔNКМ отнять один и тот же треугольник МRN, то останутся тоже равные треугольники.
№9. ΔАДЕ=ΔВFМ, в них ∠М=∠Е=90°, АД=FВ по условию,
и так как ДС=FC, то АС=СВ, и ΔАСВ- равнобедренный, в нем углы при основании равны. угол А равен углу В. Значит, треугольники равны по острому углу и гипотенузе.
Даны вершины треугольника:
А(3; -1; 6), В(1; 7; -2), С(1; -3; 2).
Находим расстояние между точками.
d = v ((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
Вектор АВ -2 8 -8 |AB| = √(4 + 64 + 64) =√132.
Вектор ВС 0 -10 4 |BC| = √(0 + 100 + 16) =√116.
Вектор АС -2 -2 -4 |AC| = √(4 + 4 + 16) =√24.
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
10,77 4,89 11,49 13,58 27,158 26,306
116 24 132 квадраты
По теореме косинусов:
cos A = 0,355334527 cos B = 0,905111457 cos С = 0,075809804
Аrad = 1,207524401 Brad = 0,439154533 Сrad = 1,494913719
Аgr = 69,18605183 Bgr = 25,16170132 Сgr = 85,65224685 .
По заданию - треугольник АВС разносторонний.
№10
а)Т.к. ∠Д=∠В=90°, то треугольники прямоугольные. В них АД=СВ- по условию,
ДВ-общая. Значит, треугольники АДВ и СВД равны по двум катетам.
№6 ΔСЕД=ΔСFД, ∠Е=∠F=90град.
СД -общая. ЕД=FД по условию, треуг. равны по катету и гипотенузе.
б) ΔАЕД=ΔВFД т.к. ∠АЕД=∠ДFВ = 90°, АД=ВД по условию,
ЕД=FД по условию. треуг. равны по гипотенузе и катету.
в) треугольники АСД И ВСД равны, т.к. составлены из двух равных, а именно АСД из треугольников АЕД И СЕД, треугольник ВСД составлен из треугольников ВFД и ДFС
№7.
а)ΔМSR=ΔNRS, в них ∠M=∠N=90°, ∠NRS=∠MSR по условию, RS-общая. Треугольники равны по острому углу и гипотенузе.
б) Если от равных треугольников NRS и MSR отнять один и тот же ΔRTS, то останутся равные треугольники, а именно
ΔRMT=ΔSNT
№8.
а)∠К=∠L=90°
ΔМLN =ΔNКМ. В них МN-общая, ∠М=∠N по условию, значит треугольники равны по острому углу и гипотенузе.
б)ΔКRМ=Δ LRN, (∠L=∠ К=90°) т.к. если от равных ΔМLN и ΔNКМ отнять один и тот же треугольник МRN, то останутся тоже равные треугольники.
№9. ΔАДЕ=ΔВFМ, в них ∠М=∠Е=90°, АД=FВ по условию,
и так как ДС=FC, то АС=СВ, и ΔАСВ- равнобедренный, в нем углы при основании равны. угол А равен углу В. Значит, треугольники равны по острому углу и гипотенузе.