Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
следовательно ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты), следовательно:
Samk/Sabm=1/2 следовательно:
12/Sabm=1/2 следовательно:
24=Sabm.
Sabk=24см²+12см²=36см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
следовательно ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты), следовательно:
Samk/Sabm=1/2 следовательно:
12/Sabm=1/2 следовательно:
24=Sabm.
Sabk=24см²+12см²=36см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=36*2=72см².
ответ: 72см²
1) ∠А=35°, ∠В=90°, ∠С=55°
2)Нет
1) Если описать окружность вокруг ΔАВС, то центр такой окружности будет в точке D. Это прямоугольный треугольник ∠В=90°.
Рассмотрим ΔВDС. Он равнобедренный DВ=DС, значит
∠DВС=∠DСВ, а ∠АDВ- внешний угол ΔВDС
∠АDВ=∠DВС+∠DСВ=2∠DВС
∠DВС=∠АDВ:2=110°:2=55°.
∠С=55°. По теореме о сумме острых углов прямоугольного треугольника ∠А=90°-55°=35°
2)Нет
По теореме о сумме сторон треугольника : сумма длин двух любых сторон треугольника больше длины третьей стороны этого треугольника
22+27 >49
49>49 - не выполняется