У ромбі зі стороною 10коріньз 3 см і кутом 60 градусів через вершину гострого кута проведено площину на відстані 9 см від усіх точок його меншої діагоналі. Знайдіть проекції діагоналей ромба на цю площину.
Условие задачи дано с ошибкой. Должно быть так: В ΔАВС АВ = 15, АС = 20, ВС = 32. На стороне АВ отложен отрезок АD = 9 см, на стороне АС отрезок АЕ = 12 см. Найти DЕ и отношение площадей треугольника АВС и АDЕ.
AD : AB = 9 : 15 = 3 : 5 AE : AC = 12 : 20 = 3 : 5 ∠А - общий для треугольников АВС и ADE, значит ΔАВС подобен ΔADE по двум пропорциональным сторонам и углу между ними. Коэффициент подобия: k = 3/5 DE : BC = 3 : 5 DE : 32 = 3 : 5 DE = 32 · 3 / 5 = 19,2 Площади подобных треугольников относятся как квадрат коэффициента подобия: Sabc : Sade = 9 : 25
В ΔАВС АВ = 15, АС = 20, ВС = 32. На стороне АВ отложен отрезок АD = 9 см, на стороне АС отрезок АЕ = 12 см. Найти DЕ и отношение площадей треугольника АВС и АDЕ.
AD : AB = 9 : 15 = 3 : 5
AE : AC = 12 : 20 = 3 : 5
∠А - общий для треугольников АВС и ADE, значит
ΔАВС подобен ΔADE по двум пропорциональным сторонам и углу между ними.
Коэффициент подобия:
k = 3/5
DE : BC = 3 : 5
DE : 32 = 3 : 5
DE = 32 · 3 / 5 = 19,2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sabc : Sade = 9 : 25
S=√p(p-a)(p-b)(p-c) , формула Герона , p _полупериметр
p =(a+b+c)/2 =(3+8+7)/2 =9 (см).
S =√9*6*1*2 =6√3 (см²).
2.
∠A +∠C =140°.
---
∠B =∠D - ?
* * * трапеция равнобедренная ⇒ ∠A=∠C и ∠D = ∠B * * *
∠A=∠C =140°/2 =70°.
∠A+∠B =180° ( как сумма односторонних углов) ;
∠B =180° - ∠A=180 °- 70°=110°.
или
(∠A+ ∠C)+(∠B + ∠D) =360 ;
(∠A+ ∠C)+2∠B =360 ;
∠B =(360°-(∠A+ ∠C))/2 =(360°-140°) /2 =110°.
4.
S = AB*CH/2 = 3*3/2 =4,5 (см²).
5.
R =c/2 где с гипотенуза ;
По теореме Пифагора : c=√(6²+8²) =√(36+64) =√100 =10 (см) .
R =c/2 =10 см /2 =5 см.