у треугольника, заданном вершины a(2; -1), b(5; 11), c(11; 3), найти: 1) уравнение и длину медианы am, проведенной из вершины a; 2) уравнение и длину высоты an, проведенной из вершины a; 3) острый угол между медианой am и высотою an.
Вписать в окружность можно только равнобедренную трапецию.
Если центр такой окружности лежит на большем основании, то угол, образованный боковой стороной и диагональю, равен 90°, т.к. опирается на диаметр ( большее основание).
Обозначим трапецию АВСД.
ВС=12, АД=20.
ВН - высота.
Высота прямоугольного треугольника, опущенная из тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(АД-ВС):2=(20-12):2=4
ДН=(АД+ВС):2=16
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу. Другими словами, квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
ВН²=АН•ДН
ВН=√(4•16)=8
Площадь трапеции равна произведению высоты на полусумму оснований.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Вписать в окружность можно только равнобедренную трапецию.
Если центр такой окружности лежит на большем основании, то угол, образованный боковой стороной и диагональю, равен 90°, т.к. опирается на диаметр ( большее основание).
Обозначим трапецию АВСД.
ВС=12, АД=20.
ВН - высота.
Высота прямоугольного треугольника, опущенная из тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(АД-ВС):2=(20-12):2=4
ДН=(АД+ВС):2=16
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу. Другими словами, квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
ВН²=АН•ДН
ВН=√(4•16)=8
Площадь трапеции равна произведению высоты на полусумму оснований.
Ѕ=8•16=128 (ед. площади)
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0