Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Sаbсd = 54 см².
Объяснение:
Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-