У трикутнику ABC кут B=90°. Відрізок MC – перпендикуляр до площини трикутника. Знайдіть відстань від точки M до прямої AB, якщо: AC= 5 корнів із 2 см, кут A=45°, кут MBC=60°. Хелп ми
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
$\displaystyle \angle$ABC = $\displaystyle \angle$ABD = $\displaystyle \beta$, $\displaystyle \angle$ACB = $\displaystyle \angle$A1BC = $\displaystyle \angle$A1BD = $\displaystyle \gamma$
-- данные углы.
Дано:
∆АВС.
∠А = 45°
BD - высота, медиана.
АС = 5 см.
Найти:
Расстояние от В до АС.
Решение.
∆ABD и ∆CBD - прямоугольные.(так как BD - высота)
Рассмотрим эти треугольники.
AD = DC, по условию
BD - общая сторона.
=> ∆ABD = ∆CBD, по катетам.
=> ∆АВС - равнобедренный.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> ВD = 5 ÷ 2 = 2,5 см.
ответ: 2,5 см.