Решение Проведем высоту ВН к основанию АД рассмотрим треугольник АВН- прямоугольный. АВ-гипотенуза, угол А=180-150=30. Против угла в 30 лежит высота ВН=1/2АВ=7корень3. АС=корень АВ2-ВН2=21.
Проведем высоту СК к основанию АД. Треугольник СДК- прямоугольный. треугольник СДК=треугольнику АВН АВ=СД, угол А=уголД (по гипотенузе и острому углу). Равны и соответственные стороны ВН=СК=21. АД=ВН+ВС+СК=52 Sавсд=1/2(ВС+АД)*ВН=1/2*52*7корень3=182 корень3
Проведем сечение пирамиды через высоту и cередину стороны основания. Получим сечение шара в виде круга, который касается основания в его центре Н и касается апофемы в точке К. ОН и ОК - радиусы шара, равны r. ОМ - биссектриса угла α.
r/tgα/2 =HM. Это радиус окружности, вписанной в основание пирамиды, значит сторона основания а = НМ*√3 = r√3/tgα/2.
Площадь треугольника равна а²√3/4 = 3√3r²/4tg²α/2.
Дано АВСД-трапеция АВIIСД
уголА= уголД (углы при основании)
уголА+уголВ=180 угол В=150
АВ=СД=14корень3 (боковые стороны)
ВС=10
Найти Sавсд
Решение Проведем высоту ВН к основанию АД рассмотрим треугольник АВН- прямоугольный. АВ-гипотенуза, угол А=180-150=30. Против угла в 30 лежит высота ВН=1/2АВ=7корень3. АС=корень АВ2-ВН2=21.
Проведем высоту СК к основанию АД. Треугольник СДК- прямоугольный. треугольник СДК=треугольнику АВН АВ=СД, угол А=уголД (по гипотенузе и острому углу). Равны и соответственные стороны ВН=СК=21. АД=ВН+ВС+СК=52 Sавсд=1/2(ВС+АД)*ВН=1/2*52*7корень3=182 корень3
Проведем сечение пирамиды через высоту и cередину стороны основания. Получим сечение шара в виде круга, который касается основания в его центре Н и касается апофемы в точке К. ОН и ОК - радиусы шара, равны r. ОМ - биссектриса угла α.
r/tgα/2 =HM. Это радиус окружности, вписанной в основание пирамиды, значит сторона основания а = НМ*√3 = r√3/tgα/2.
Площадь треугольника равна а²√3/4 = 3√3r²/4tg²α/2.
Высоту пирамиды находим из треугольника НМS,
HS=HM*tgα = rtgα / tgα/2.
Теперь объем v= 1/3 * 3√3r²/ 4tg²α/2 * rtgα/tgα/2 = r³√3 tgα/4tg³α/2.