Начнём с верхнего квадрата с площадью 17(ед²) - найдём вторую его сторону: 17÷5=3,4 - вторая сторона фигуры. Общая длина стороны фигур с площадью 60 и 17 составляет 9, тогда длина фигуры площадью 60(ед²) равна: 9–3,4=5,6. Сложим площади 60 + 52=112(ед²) - общая площадь площадей 60 и 52. У фигуры с этой площадью ширина 5,6, которую мы нашли, тогда длина этого прямоугольника=112÷5,6=20. Эта длина является самой большой, включая в себя длину 5 и 10. Теперь найдём неизвестную длину:
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
неизвестная длина=5
Объяснение:
Начнём с верхнего квадрата с площадью 17(ед²) - найдём вторую его сторону: 17÷5=3,4 - вторая сторона фигуры. Общая длина стороны фигур с площадью 60 и 17 составляет 9, тогда длина фигуры площадью 60(ед²) равна: 9–3,4=5,6. Сложим площади 60 + 52=112(ед²) - общая площадь площадей 60 и 52. У фигуры с этой площадью ширина 5,6, которую мы нашли, тогда длина этого прямоугольника=112÷5,6=20. Эта длина является самой большой, включая в себя длину 5 и 10. Теперь найдём неизвестную длину:
20–5–10=5
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ