Треугольник РМК не равнобедренный, и углы при его основании не равны 30° Высоту МН этого треугольника можно найти из его площади. Площадь треугольника равна половине произведения его сторон на синус угла, заключенного между ними. S = 1/2 РМ* MN * sin(120) S = 1/2 3*4* √3/2=3√3 Но площадь треугольника равна и половине произведения его высоты на сторону, к которой она проведена. S=ah:2 МН проведена к РК. РК найдем по теореме косинусов: PK² = 3² + 4² - 2*3*4*cos(120°) = 9 + 16 -24(-1/2)=37 PK=√37 МН=2 S:37=(6√3):√37 или МН=10,3923:6,0827≈1,7 см
28
Объяснение:
Тк МК параллельна ВС и она явл средней линией треуг, то она равна половине ВС, т.е МК = 5
Периметр акм = сумме всех сторон этого треугольника, а тк одна из сторон 5, то сумма АК и АМ равна 13.
ТК МК сред линия, то АК=КВ и АМ=МС, тут уже не важно чему равно АМ и АК, ответ будет одинаковый в любом случае. Периметр кбсм равен 18+10 =28
Объяснение :
периметр кбсм равен МК +КВ +МС + ВС
но, мы уже выяснили, что АК=КВ и МС = АМ. Тогда можно записать так периметр кбсм равен МК+АК+АМ+ВС
ВС это 10
Сумма МК, АК, АМ это как раз таки периметр маленького треугольника =18
Вот откуда 18+10
Площадь треугольника равна половине произведения его сторон на синус угла, заключенного между ними.
S = 1/2 РМ* MN * sin(120)
S = 1/2 3*4* √3/2=3√3
Но площадь треугольника равна и половине произведения его высоты на сторону, к которой она проведена.
S=ah:2
МН проведена к РК.
РК найдем по теореме косинусов:
PK² = 3² + 4² - 2*3*4*cos(120°) = 9 + 16 -24(-1/2)=37
PK=√37
МН=2 S:37=(6√3):√37 или
МН=10,3923:6,0827≈1,7 см