1)Воспользуемся для решения теоремой синусов для треугольника.
ВС / Sin A = AB / Sin C = AC / Sin B.
AB = 4 * √2, угол А = 450, угол С = 300, ВС = ?
(4 * √2) / Sin 30 = BC / Sin 45.
(4 * √2) / (1 / 2) = BC / 1 / √2).
ВС / 2 = (4 * √2) / √2 = 4.
ВС = 4 * 2 = 8 см.
ответ: ВС = 8 см.
2)
Рассмотрим треугольник АОС. Так как медианы равнобедренного треугольника равны и в точке пересечения делятся в отношении 2/1, то АО = СО, следовательно треугольник АОС равнобедренный, а его углы при основании будут равны: угол А = С = (180 – 120) / 2 = 300.
Тогда по теореме синусов: АС / Sin 120 = AO / Sin 30.
12 / (√3/2) = АО / (1/2).
АО = 6 / (√3/2) = 12 / √3 = 4 * √3.
Медианы треугольника, в точке пересечении делятся в соотношении 2/1, тогда АО / ОМ = 2 / 1.
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
1)Воспользуемся для решения теоремой синусов для треугольника.
ВС / Sin A = AB / Sin C = AC / Sin B.
AB = 4 * √2, угол А = 450, угол С = 300, ВС = ?
(4 * √2) / Sin 30 = BC / Sin 45.
(4 * √2) / (1 / 2) = BC / 1 / √2).
ВС / 2 = (4 * √2) / √2 = 4.
ВС = 4 * 2 = 8 см.
ответ: ВС = 8 см.
2)
Рассмотрим треугольник АОС. Так как медианы равнобедренного треугольника равны и в точке пересечения делятся в отношении 2/1, то АО = СО, следовательно треугольник АОС равнобедренный, а его углы при основании будут равны: угол А = С = (180 – 120) / 2 = 300.
Тогда по теореме синусов: АС / Sin 120 = AO / Sin 30.
12 / (√3/2) = АО / (1/2).
АО = 6 / (√3/2) = 12 / √3 = 4 * √3.
Медианы треугольника, в точке пересечении делятся в соотношении 2/1, тогда АО / ОМ = 2 / 1.
ОМ = АО / 2 = 2 * √3.
Тогда М = СК = 2 * √3 + 4 * √3 = 6 * √3.
ответ: Медианы равны 6 * √3 см
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6