В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
dariak98
dariak98
26.06.2022 21:49 •  Геометрия

У трикутнику EFK EF=EK Точки M і N -Середини сторін EF і EK відповідно. Доведіть, що FN= KM​

Показать ответ
Ответ:
Dima7111
Dima7111
15.03.2022 08:30
Если прямая (DC),  параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость  проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC).
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3. 
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²

Умоляю, с обязательно рисунок и подробное решение сторона ав квадрата abcd лежит в плоскости α. прям
0,0(0 оценок)
Ответ:
Смамойспал123
Смамойспал123
14.02.2023 12:15

На сторонах АВ, ВС и СА треугольника АВС отмечены соответственно точки P, Q и R. Известно, что AP : PB = BQ : QC = CR : RA = 4, а площадь треугольника АВС равна 25 кв.см. Чему равна площадь треугольника PQR (в кв.см)?


Проведем ВВ₁⊥АС и РР₁⊥АС.

ΔАВВ₁ подобен ΔАРР₁ по двум углам (угол при вершине А общий, ∠АР₁Р = ∠АВ₁В = 90°), ⇒

РР₁ : ВВ₁ = АР : АВ = 4 : 5

РР₁ = 4/5 ВВ₁

AR = 1/5 AC

Sapr = 1/2 AR · PP₁ = 1/2 · 1/5 AC · 4/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем QQ₁⊥AC.

ΔСQQ₁ подобен ΔСВВ₁ по двум углам.

QQ₁ : BB₁ = CQ : CB = 1 : 5

QQ₁ = 1/5 BB₁

RC = 4/5 AC

Scqr = 1/2 RC · QQ₁ = 1/2 · 4/5 AC · 1/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем АА₁⊥ВС и РР₂⊥ВС.

ΔАА₁В подобен ΔРР₂В по двум углам.

РР₂ : АА₁ = РВ : АВ = 1 : 5

РР₂ = 1/5 АА₁

BQ = 4/5 BC

Sbpq = 1/2 BQ · PP₂ = 1/2 · 4/5 BC · 1/5 AA₁ = 4/25 (1/2 BC · AA₁) = 4/25 · Sabc


Spqr = Sabc - Sapq - Scqr - Sbpq = Sabc - 3 · 4/25 Sabc = Sabc - 12/25 Sabc = 

= 13/25 Sabc

Spqr = 13/25 · 25 = 13 см²

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота