1) 36 + 64 = 100 см - сумма периметров двух треугольников В эту сумму дважды включена искомая диагональ 2) 100 - 80 = 20 см - двойная диагональ 3) 20 : 2 = 10 см - искомая диагональ ответ: 10 см
решения a, b, c, d - стороны четырёхугольника m - диагональ 1) a + b + c + d = 80 см - периметр четырёхугольника 2) a + b + m = 36 - периметр первого треугольника 3) c + d + m 64 - периметр второго треугольника 4) a + b + m + c + d + m = 36 +64 (a + b + c + d) + 2m = 100 80 + 2m = 100 2m = 100 - 80 2m = 20 m = 20 : 2 m = 10
В эту сумму дважды включена искомая диагональ
2) 100 - 80 = 20 см - двойная диагональ
3) 20 : 2 = 10 см - искомая диагональ
ответ: 10 см
решения
a, b, c, d - стороны четырёхугольника
m - диагональ
1) a + b + c + d = 80 см - периметр четырёхугольника
2) a + b + m = 36 - периметр первого треугольника
3) c + d + m 64 - периметр второго треугольника
4) a + b + m + c + d + m = 36 +64
(a + b + c + d) + 2m = 100
80 + 2m = 100
2m = 100 - 80
2m = 20
m = 20 : 2
m = 10
P(DKBP)=20 см, S(DKBP)=20 см²
Объяснение:
В условии пропущена: ВС= 4 см! Решение предлагается этим дополнением и исправлением DKPB на DKBP:
AK = AB•3:8=8 см•3:8 = 3 см. Но, CD= AB = 8 см, поэтому СP = CD•3:8=8 см•3:8 = 3 см. Тогда KB=PD=CD–СP=8 см–3 см=5 см.
ABCD-прямоугольник, поэтому ∠A=∠C=90°. И поэтому для равных (по двум катетам) прямоугольных треугольников ΔDAK и ΔPCB применим теорему Пифагора:
BP²=DK²= AD²+AK² = (4 см)² + (3 см)² = 16 см² + 9 см² = 25 см² = (5 см)²
или DK= BP = 5 см.
Теперь можем определить периметр фигуры DKBP
P(DKBP)=DK+KB+BP+PD=5 см+5 см+5 см+5 см=20 см.
Находим площадь прямоугольника ABCD:
S(ABCD) = AB • ВС= 8 см • 4 см = 32 см².
Находим площадь треугольника ΔDAK:
S(ΔDAK) = AK• AD/2=3 см • 4 см/2= 6 см².
Тогда
S(DKBP)= S(ABCD)–2• S(ΔDAK) = 32 см² – 2•6 см²= 20 см².