Образуется прямоугольный треугольник, в котором есть угол 30 градусов, то теорема Пифагора 2х-гипотенуза данного треугольника, х -меньший катет, лежащий против угла в 30 градусов, то получаем уравнение 4х²=х²+36 3х²=36 х²=12 х=√12 то есть катет, лежащий против угла в 30 градусов равен √12см Проведём вторую высоту с другой стороны, и эти треугольники будут равны, т.к. их стороны и углы равны, а когда проведём эти треугольники то образуется сторона которая будет равная 4см, то всё основание будет 4 +2√12 Sтрапеции = (4+2√12+4)/2 * 6 =24 +6√12=24+21=45см²
∟DBK = 60°
Объяснение:
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.