1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
=
40
−20
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
32
=4
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
−b
10
−5
=5
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
−6
=8dm
sin \alpha =4/5sinα=4/5
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°
1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
2
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
c
2
−a
2
=
40
2
−20
2
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
2
=
32
=4
2
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
c
2
−b
2
=
10
2
−5
2
=5
3
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
c
2
−b
2
=
10
2
−6
2
=8dm
sin \alpha =4/5sinα=4/5
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°