если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.
Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.
DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Рассмотрим у тетраэдра АВСК основание АВС и боковую грань КВС. Обозначим О - центр основания, Р - центр грани КВС. Все грани - правильные треугольники. Поэтому, высота основания АА1, проведенная из А на ВС, пройдет через точку О. Очевидно, высота КА1 грани КВС проведенная из К пройдет через точку Р и попадет именно в А1 на ребре ВС. Как мы знаем, в правильном треугольнике центр делит высоту в отношении 1 к 2. Так что ОА1 равна (АА1)/3. Аналогично A1Р равна (КА1)/3 . Угол PA1O общий для треугольников КАА1 и А1ОР. Значит КАА1 и А1ОР подобные с коэффициентом 1/3. Значит ОР=а/3, где а - длина ребра исходного тетраэдра. Уф. Осталось применить формулу объема правильного тетраэдра V=(a3)*√3/12. Собственно важно только что объем зависит лишь от куба длины ребра. V маленького равен тогда V большого поделить на три в кубе, то есть равен 40.5/27 = 1.5
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.