Немного переиначу - пусть D лежит на AB, DE II AC, CD и AE пересекаются в точке N. Я буду доказывать, что BN - медиана ABC. Нужно обозначить еще две точки - M - точка пересечения продолжения BN и AC, K - точка пересечения BN и DE. Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить MN/NK = x; то CM = DK*x; AM = KE*x; то есть CM/AM = DK/KE; (1) Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y; то есть CM/AM = KE/DK; (2) Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить
MN/NK = x; то CM = DK*x; AM = KE*x;
то есть CM/AM = DK/KE; (1)
Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y;
то есть CM/AM = KE/DK; (2)
Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение: