Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней. АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°. В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3. Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
V_цилиндра = pi*r^2*h= pi * 41 * 8 =328pi
V_конуса = 1/3*pi*(r_конуса)^2*h_конуса = 1/3*pi*41*4 =123/3*pi
V_тела вращения = V_цилиндра - 2*V_конуса = 328pi - 246/3*pi = (328-82)pi = 246pi