укажите номера верных утверждений 1)две прямые ,перпендикулярные третьей прямой на плоскости параллельные друг другу 2) диагонали прямоугольника точкой пересечения делятся пополам 3)площадь любого параллеограмма равна произведению длин его сторон
Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности. Периметр шестиугольника равен 48 => сторона равна 48/6=8; то есть радиус описанной окружности равен 8. Если вписать в эту окружность квадрат то его диагональ - это диаметр окружности - то есть 16, стороны квадрата пусть будут х, тогда по теореме пифагора (диагональ и две стороны квадрата образуют прямоугольный треугольник - гипотенуза это диагональ квадрата а кататы равны между собой - стороны квадрата) х²+x²=16² 2х²=256 х²=128 х=8√2
1. Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. То есть АВ*АК=АС². Или АВ*(АВ-2АС)=АС². Подставляем известные значения: 12(12-2АС)=АС² или АС²+24*АС-144. АС= -12+12√2 = 12(√2-1). 2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е). Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см. Тогда радиус описанной окружности находим по формуле R=abc/[4√p(p-a)(p-b)(p-c). R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25. 3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK). 20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.
х²+x²=16²
2х²=256
х²=128
х=8√2
АС= -12+12√2 = 12(√2-1).
2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е).
Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см.
Тогда радиус описанной окружности находим по формуле
R=abc/[4√p(p-a)(p-b)(p-c).
R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25.
3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK).
20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.