Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.
ответ:Задание 1
Угол 31 градус и угол 2 равны между собой,как соответственные углы,следовательно,угол 2=31 градус
Углы 1 и 2-смежные,их сумма равна 180 градусов,мы знаем градусную меру угла 2, и можем узнать,чему равен угол1
180-31=149 градусов
Задание 2
Угол 131 градус и угол 2 являются накрест лежащими углами,накрест лежащие углы равны между собой,поэтому и угол 2=131 градус
Углы 1 и 2- смежные,их сумма равна 180 градусов,зная градусную меру угла 2 узнаём,чему равен угол 1
180-131=59 градусов
Объяснение:
Объяснение:
Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.