55°
Объяснение:
ВАC + АВD =110°
BAC = AND= 110° : 2= 55°
Диагонали прямоугольника имеют одинаковую длину, AC = BD;
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам,
AO = OC = BO = OD;
Получается, треугольник ABO — равнобедренный (BO = AO), углы при основании равнобедренного треугольника равны, ∠ABO = ∠OAB;
∠ABD — это тот же ∠ABO;
∠AOB + ∠AOD = 180° (лежат на одном развёрнутом угле BOD), ∠AOB = 180° – ∠AOD = 180° – 110° = 70°;
Сумма углов треугольника равна 180°,
∠ABO + ∠AOB + ∠OAB = 180°,
Подставляем, что ∠ABO = ∠OAB, получаем
2 × ∠ABO + ∠AOB = 180°,
2 × ∠ABO = 180° – ∠AOB = 180° – 70° = 110°,
∠ABO = 110° ÷ 2 = 55° = ∠OAB
ответ: 55°
55°
Объяснение:
ВАC + АВD =110°
BAC = AND= 110° : 2= 55°
Диагонали прямоугольника имеют одинаковую длину, AC = BD;
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам,
AO = OC = BO = OD;
Получается, треугольник ABO — равнобедренный (BO = AO), углы при основании равнобедренного треугольника равны, ∠ABO = ∠OAB;
∠ABD — это тот же ∠ABO;
∠AOB + ∠AOD = 180° (лежат на одном развёрнутом угле BOD), ∠AOB = 180° – ∠AOD = 180° – 110° = 70°;
Сумма углов треугольника равна 180°,
∠ABO + ∠AOB + ∠OAB = 180°,
Подставляем, что ∠ABO = ∠OAB, получаем
2 × ∠ABO + ∠AOB = 180°,
2 × ∠ABO = 180° – ∠AOB = 180° – 70° = 110°,
∠ABO = 110° ÷ 2 = 55° = ∠OAB
ответ: 55°