Площадь параллелограмма равна двум площадям треугольника АСД.
Применим формулу Герона. p = 13,3919905
.S(ACD) = 26,05591647 ≈ 26,1.
S(ABCD) = 2*26,05591647 ≈ 52,1.
Длины отрезков стороны АД, отсекаемые точкой Е, находим с учётом свойства биссектрисы - она делит АД пропорционально сторонам АС и СД: АЕ = 5,6. ЕД = 3,0.
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
5) Угол АОВ = СОД = 72 градуса.
Тогда угол АВО = 180 - 44 - 72 = 64 градуса.
Находим половину диагонали АО по теореме синусов.
АО = (6,3/sin 72°)*sin 64° = (6,3/0,95106)* 0,89879 = 5,9538 ≈ 6,0.
Находим диагональ АС = 2*АО = 11,9076 ≈ 11,9.
Сторону параллелограмма АД находим по теореме косинусов.
АД = √(СD^2 + AC^2 - 2*CD*AC*cos44) = 8,57638 ≈ 8,6.
Периметр Р = 2*6,3 + 2*8,6 = 29,8.
Площадь параллелограмма равна двум площадям треугольника АСД.
Применим формулу Герона. p = 13,3919905
.S(ACD) = 26,05591647 ≈ 26,1.
S(ABCD) = 2*26,05591647 ≈ 52,1.
Длины отрезков стороны АД, отсекаемые точкой Е, находим с учётом свойства биссектрисы - она делит АД пропорционально сторонам АС и СД: АЕ = 5,6. ЕД = 3,0.