Общее уравнение прямой в пространстве ax + by + cz + d = 0, где a,b,c, d -- числа.
Через любые две точки можно построить прямую и притом только одну. Допустим, что через точки A и B проходит прямая. Найдем ее уравнение: для этого подставим координаты в общее уравнение и найдем коэффициенты.
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*0 + c*0 + d = 0
a + d = 0
Подставляем в уравнение координаты точки и(1,2,2):
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*2 + c*2 + d = 0
a + 2b + 2c + d = 0
Объединим 2 полученных уравнения в систему и решим ее:
Пусть a = 1, b = 1, тогда d = -1, c = -1. Получаем уравнение прямой, проходящей через точки A и B:
1*x + 1*y -1*z - 1 = 0
x + y - z - 1 = 0.
Если точка C, лежит на одной прямой с точками A и B, то ее координаты должны удовлетворять полученному уравнению прямой. Проверим:
2 + 2 - 2 - 1 ≠ 0 ⇒ C не лежит на одной прямой с точками A и B
Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
Нет
Объяснение:
Общее уравнение прямой в пространстве ax + by + cz + d = 0, где a,b,c, d -- числа.
Через любые две точки можно построить прямую и притом только одну. Допустим, что через точки A и B проходит прямая. Найдем ее уравнение: для этого подставим координаты в общее уравнение и найдем коэффициенты.
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*0 + c*0 + d = 0
a + d = 0
Подставляем в уравнение координаты точки и(1,2,2):
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*2 + c*2 + d = 0
a + 2b + 2c + d = 0
Объединим 2 полученных уравнения в систему и решим ее:
Пусть a = 1, b = 1, тогда d = -1, c = -1. Получаем уравнение прямой, проходящей через точки A и B:
1*x + 1*y -1*z - 1 = 0
x + y - z - 1 = 0.
Если точка C, лежит на одной прямой с точками A и B, то ее координаты должны удовлетворять полученному уравнению прямой. Проверим:
2 + 2 - 2 - 1 ≠ 0 ⇒ C не лежит на одной прямой с точками A и B
ответ: 6.
Объяснение:
Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
ОМ = АМ*tg30* = 6√3*√3/3=6.