2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(
АК⊥(АВСД). По условию АВСД-прямоугольник, Его диагонали равны, АС=ВД=√407
ТогдаАК⊥АД, АК⊥АС, АК⊥АВ
треугольники КДА, КВА,КСА-прямоугольные(по теореме о прямой перпендикулярной плоскости!)
По теореме Пифагора
изтр.КВА; AK^2+AB^2=KB^2;
из тр-ка КДА: AK^2+AD^2=KD^2
Складываем равенста: 2AK^2+a^2+b^2=KB^2+KD^2, где АВ=а, АД=в-стороны прямоугольника
ИЗ тр-каАСД: АС^2=AD^2+DC^2; a^2+b^2=(√407)^2; a^2+b^2=407
тогда 2AK^2+407=(12√2)^2 +13^2
2AK^2=288+169-407
2AK^2=50; AK^2=25; AK=5
из тр-ка КСА AK^2+AC^2=KC^2
25+(√407)^2=KC^2
KC=√(432=√(2^4 *3^3)=2^2*3√3=12√3
параллелепипеде верны следующие равенства:
\begin{gathered}\vec{AB}=\vec{A_1B_1}=\vec{DC}=\vec{D_1C_1}\\\vec{BC}=\vec{B_1C_1}=\vec{AD}=\vec{A_1D_1}\\\vec{AA_1}=\vec{BB_1}=\vec{DD_1}=\vec{CC_1}\\\end{gathered}AB=A1B1=DC=D1C1BC=B1C1=AD=A1D1AA1=BB1=DD1=CC1
следовательно
\begin{gathered}\vec{AB}+\vec{B_1C_1}+\vec{DD_1}+\vec{CD}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DD_1}=\vec{AD_1}vec{BD_1}-\vec{B_1C_1}=\vec{BD_1}-\vec{BC}=\vec{CD_1}\end{gathered}AB+B1C1+DD1+CD=AB+BC+CD+DD1=AD1BD1−B1C1=BD1−BC=CD1
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(