решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
РАСЧЕТ ТРЕУГОЛЬНИКАзаданного координатами вершин: Вершина 1: A(1; 3) Вершина 2: B(-1; 1) Вершина 3: C(2; 2) ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √8 ≈ 2,828427125. BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3,16227766. AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √2 ≈ 1,414213562. Как видим, сумма квадратов сторон АВ и АС равна квадрату стороны ВС. Поэтому треугольник прямоугольный. Центр описанной окружности находится на середине гипотенузы. То есть, координаты центра равны полусумме координат точек В и С: Оопис = (((-1)+2)/2=0,5; (1+2)/2=1,5) = (0,5; 1,5). Дальнейший расчёт подтверждает это.
ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 7,40491834728766 ПЛОЩАДЬ ТРЕУГОЛЬНИКА Площадь = 2 УГЛЫ ТРЕУГОЛЬНИКА Угол BAC при 1 вершине A: в радианах = 1,5707963267949 в градусах = 90 Угол ABC при 2 вершине B: в радианах = 0,463647609000806 в градусах = 26,565051177078 Угол BCA при 3 вершине C: в радианах = 1,10714871779409 в градусах = 63,434948822922 ВПИСАННАЯ ОКРУЖНОСТЬ Центр Ci(1; 2,23606797749979) Радиус = 0,540181513475453 ОПИСАННАЯ ОКРУЖНОСТЬ Центр Co(0,5; 1,5) Радиус = 1,58113883008419
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3,16227766.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √2 ≈ 1,414213562.
Как видим, сумма квадратов сторон АВ и АС равна квадрату стороны ВС.
Поэтому треугольник прямоугольный.
Центр описанной окружности находится на середине гипотенузы.
То есть, координаты центра равны полусумме координат точек В и С:
Оопис = (((-1)+2)/2=0,5; (1+2)/2=1,5) = (0,5; 1,5).
Дальнейший расчёт подтверждает это.
ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 7,40491834728766 ПЛОЩАДЬ ТРЕУГОЛЬНИКА Площадь = 2 УГЛЫ ТРЕУГОЛЬНИКА Угол BAC при 1 вершине A: в радианах = 1,5707963267949 в градусах = 90 Угол ABC при 2 вершине B: в радианах = 0,463647609000806 в градусах = 26,565051177078 Угол BCA при 3 вершине C: в радианах = 1,10714871779409 в градусах = 63,434948822922 ВПИСАННАЯ ОКРУЖНОСТЬ Центр Ci(1; 2,23606797749979) Радиус = 0,540181513475453 ОПИСАННАЯ ОКРУЖНОСТЬ Центр Co(0,5; 1,5) Радиус = 1,58113883008419