В основании пирамиды лежит квадрат. Обозначим АВСД. Диагонали пересекаются в точке О. Вершину пирамиды обозначим S Рассмотрим треугольник АSО. Он прямоугольный, по теореме Пифагора определим катет ОА² = 100-64=36, ОА=6. Определим сторону основания пирамиды. АВ²=36+36= 72, АВ=√72=6√2. Площадь основания равна S= АВ²=72, Объем пирамиды вычислим по формуле: V=(S · h) / 3 = 72·8/3=24·8=192 (куб. ед.) Все боковые грани пирамиды равнобедренные треугольники равные между собой. Рассмотрим одну из боковых граней: АSВ. Построим высоты SК АК= 3√2. Определим длину SК по теореме Пифагора. SК²=10²-(3√2)²=100-18=82, SК=√82. Определим площадь грани АSВ. S =0,5·АВ · SК = 0,5·6√2·√82=3√164. Площадь боковой поверхности пирамиды равна 4·3√164=12√164. Полная площадь поверхности пирамиды равна 12√164+72≈12·13+72=228(кв. ед.) ответ: 192 куб. ед., 228 кв. ед.
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.
Определим сторону основания пирамиды.
АВ²=36+36= 72,
АВ=√72=6√2.
Площадь основания равна S= АВ²=72,
Объем пирамиды вычислим по формуле:
V=(S · h) / 3 = 72·8/3=24·8=192 (куб. ед.)
Все боковые грани пирамиды равнобедренные треугольники равные между собой.
Рассмотрим одну из боковых граней: АSВ. Построим высоты SК
АК= 3√2.
Определим длину SК по теореме Пифагора.
SК²=10²-(3√2)²=100-18=82,
SК=√82.
Определим площадь грани АSВ.
S =0,5·АВ · SК = 0,5·6√2·√82=3√164.
Площадь боковой поверхности пирамиды равна
4·3√164=12√164.
Полная площадь поверхности пирамиды равна
12√164+72≈12·13+72=228(кв. ед.)
ответ: 192 куб. ед., 228 кв. ед.
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.