Утрикутник зі сторонами 12 см, 16 см і 20 см вписано півколо так, що його центр лежить на середній за довжиною стороні трикутника й півколо дотикається до двох інших сторін. знайдіть довжину цього півкола.
Предлагаю координатный метод. Привяжем систему координат к вершине В куба. Пусть сторона ВС - ось Х, сторона ВВ1 - ось Y, а сторона ВА - осьZ. Тогда имеем: Точки В(0;0;0), C(1;0;0), D1(1;1;1) B1(0;1;0), C(1;0;0) D(1;0;1).
Для составления уравнения плоскости используем формулу: |x - xB xC - xB xD - xB| |y - yB yC - yB yD - yB| = 0. |z - zB zC - zB zD - zB| Для составления уравнения плоскости CD1A1B подставим данные трех наших точек B,C и D1: |х-0 1 1| |y-0 0 1| = 0. |z-0 0 1| Раскрываем определитель по первому столбцу, находим уравнение плоскости: |0 1| |1 1| |1 1| х*|0 1| - y*|0 1| + z*|0 1| =0. x*(0-0) - y*(1-0) + z*(1-0) = 0. Или х*(0)-y*(-1)+z*(1)=0 Это уравнение прямой вида А1х+В1y+C1z=0 с коэффициентами А1=0, В1=-1, С1=1. Для составления уравнения плоскости DA1B1С подставим данные трех наших точек B1,C и D: |х-0 1 1 | |y-1 -1 -1 | = 0. |z-0 0 1 | Раскрываем определитель по первому столбцу, находим уравнение плоскости: |-1 -1| |1 1| | 1 1| х*| 0 1| - y*|0 1| + z*|-1 -1| =0. x*(-1-0)) - y*(1-0) + z*(-1+1) = 0. Или х*(-1)-y*(1)+z*(0)=0 Это уравнение прямой вида А2х+В2y+C2z=0 с коэффициентами А2=-1, В2=-1, С2=0 . Угол между плоскостями определяется по формуле: Cosα=|A1*A2+B1*B2+C1*C2|/[√(A1²+B1²+C1²)*√(A2²+B2²+C2²)]. В нашем случае: Cosα=|0+1+0|/[√(0+1²+1²)*√(1²+1²+0)]=1/2. α=60°. ответ: искомый угол равен 60°.
Пусть сторона треугольника х см, тогда половина основания равно х/2, так как высота в равностороннем треугольнике является медианой и биссектрисой, то делит основание пополам и равносторонний треугольник на два равных прямоугольных треугольника. По теореме Пифагора 3² + х²/4 = х² 36 + х² =4х² 36 = 3х² х²=12 х=√12 x≈3,46 P=a+b+c=3,46+3,46+3,46=10,38
Привяжем систему координат к вершине В куба.
Пусть сторона ВС - ось Х, сторона ВВ1 - ось Y, а сторона ВА - осьZ.
Тогда имеем:
Точки В(0;0;0), C(1;0;0), D1(1;1;1)
B1(0;1;0), C(1;0;0) D(1;0;1).
Для составления уравнения плоскости используем формулу:
|x - xB xC - xB xD - xB|
|y - yB yC - yB yD - yB| = 0.
|z - zB zC - zB zD - zB|
Для составления уравнения плоскости CD1A1B
подставим данные трех наших точек B,C и D1:
|х-0 1 1|
|y-0 0 1| = 0.
|z-0 0 1|
Раскрываем определитель по первому столбцу, находим уравнение плоскости:
|0 1| |1 1| |1 1|
х*|0 1| - y*|0 1| + z*|0 1| =0.
x*(0-0) - y*(1-0) + z*(1-0) = 0. Или
х*(0)-y*(-1)+z*(1)=0 Это уравнение прямой вида А1х+В1y+C1z=0 с коэффициентами А1=0, В1=-1, С1=1.
Для составления уравнения плоскости DA1B1С
подставим данные трех наших точек B1,C и D:
|х-0 1 1 |
|y-1 -1 -1 | = 0.
|z-0 0 1 |
Раскрываем определитель по первому столбцу, находим уравнение плоскости:
|-1 -1| |1 1| | 1 1|
х*| 0 1| - y*|0 1| + z*|-1 -1| =0.
x*(-1-0)) - y*(1-0) + z*(-1+1) = 0. Или
х*(-1)-y*(1)+z*(0)=0 Это уравнение прямой вида А2х+В2y+C2z=0 с коэффициентами А2=-1, В2=-1, С2=0 .
Угол между плоскостями определяется по формуле:
Cosα=|A1*A2+B1*B2+C1*C2|/[√(A1²+B1²+C1²)*√(A2²+B2²+C2²)].
В нашем случае: Cosα=|0+1+0|/[√(0+1²+1²)*√(1²+1²+0)]=1/2.
α=60°.
ответ: искомый угол равен 60°.
По теореме Пифагора 3² + х²/4 = х²
36 + х² =4х²
36 = 3х²
х²=12
х=√12
x≈3,46
P=a+b+c=3,46+3,46+3,46=10,38