В ∆ABC ,з прямим кутом C, гіпотенуза AB=5см, BC=4см, AC=3см. Знайдіть sin〖∠A〗.
А)4/5; Б)3/5; В)5/4; Г) 4/3.
2.Спростіть вираз 1-〖sin 〗^2 α+〖cos 〗^2 α.
А)2〖cos 〗^2 α; Б)-2〖sin 〗^2 α; В)2; Г)1.
3. Дві сторони трикутника 7м і 9м, а кут між ними дорівнює 60°. Знайдіть третю сторону.
А)√47 м; Б)√193 м; В)√67 м; Г) визначити неможливо.
4. В ∆ABC ∠A=60°,∠B=30°,AB=20см. Знайдіть сторону BC.
А) 20см; Б)20√2 см; В)15см; Г)10√3см.
5. Основа рівнобедреного трикутника дорівнює 8м, а кут між бічними сторонами 60°. Визначте площу трикутника.
А) 32см2; Б)32√3 см2; В)16√3/3 см2; Г) 16√3 см2.
6. В ∆ABC дві сторони 20м і 21м, а синус кута між ними дорівнює 0,6. Знайдіть третю сторону.
7. Висота BD трикутника ABC поділяє основу AC на відрізки AD=7см і CD=9см, а ∠A=45°. Знайдіть площу трикутника ABC.
8. Сторони трикутника дорівнюють 6см, 25см і 29см. Знайдіть найменшу висоту трикутника.
Решаем как частный случай
Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||,
т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * *
MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔
√(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S.
Общий случай три уравнения с тремя переменными M(x ; y ; z)
Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz)
⇒ BA =BC.
∠SEO =∠SFO=∠SMO=∠SNO = α =60°,SO=3√3.
E∈[AB] , F∈[BC] , M ∈[AB] ,N ∈[CD] .
V -?
V =(1/3)*Sосн *H =(1/3)*Sосн *3√3 = √3*Sосн.
Пусть основания высоты пирамиды точка O:
* * * SO⊥ (ABCD), O ∈ (ABCD). * * *
Если все двугранные углы при ребрах основания составляют равные
углы (как в данном примере α=60°) ,то высота пирамиды проходит через центр окружности вписанной в основании (здесь ромб ).
[[ Прямоугольные треугольники SEO , SFO,SMO и SNO равны по общим катетом SO и острым углам ∠SEO =∠SFO=∠SMO=∠SNO.
⇒EO =FO=MO=NO =r и SE ,SF, SM, SN равные апофемы .]]
EF⊥ AD ; MN ⊥BC
* * *
Рассмотрим ΔESF: треугольник равносторонний ∠SEO =∠SFO=60°.
SO =(a*√3)/2= (EF*√3)/2.
3√3 =(EF*√3)/2⇒ EF = 6 . Проведем BH ⊥AD.Ясно BH =EF =6.
Из ΔABH: BH =AB/2 (катет против угла ∠A =30°) ⇒AB=2BH.
Sосн =AD*BH =AB*BH =2BH*BH =2BH² =2*6² =72.
* * * или Sосн =AB*AD*sin∠A =AB²*sin∠A * * *
V =√3*Sосн =72√3.