В цилиндре радиус основания 6 см, а высота 4см. Найти площадь основания, площадь боковой поверхности, площадь полной поверхности, объем цилиндра и вписанной в него правильной шестиугольной призмы.
Острые углы данного прямоугольного треугольника равны 32° и 58°.
Объяснение:
Предположим, что пересекаются биссектрисы двух острых углов. Тогда сумма половин этих углов равна 45° (так как сумма острых углов равна 90° и угол, под которым пересекаются эти биссектрисы, ВСЕГДА равен 135° (или 45°, если брать смежный). Следовательно, нам дан угол пересечения биссектрис прямого и одного из острых углов. Пусть это будут углы В и С. Тогда в треугольнике АОС ∠ОАС = 45°(половина прямого), а ∠АОС = 74°(дано). По сумме углов треугольника АОС
∠ОСА = 180°-45°-74° = 61°, а это половина угла С треугольника АВС. Значит острый угол С получается равным 122°, что противоречит условию существования прямоугольного треугольника.
Следовательно, угол пересечения биссектрис ∠АОС = 106°(смежный с данным).
Тогда ∠ОСА = 180°-45°-106° = 29°, а ∠С = 2·29° = 58°.
Острые углы данного прямоугольного треугольника равны 32° и 58°.
Объяснение:
Предположим, что пересекаются биссектрисы двух острых углов. Тогда сумма половин этих углов равна 45° (так как сумма острых углов равна 90° и угол, под которым пересекаются эти биссектрисы, ВСЕГДА равен 135° (или 45°, если брать смежный). Следовательно, нам дан угол пересечения биссектрис прямого и одного из острых углов. Пусть это будут углы В и С. Тогда в треугольнике АОС ∠ОАС = 45°(половина прямого), а ∠АОС = 74°(дано). По сумме углов треугольника АОС
∠ОСА = 180°-45°-74° = 61°, а это половина угла С треугольника АВС. Значит острый угол С получается равным 122°, что противоречит условию существования прямоугольного треугольника.
Следовательно, угол пересечения биссектрис ∠АОС = 106°(смежный с данным).
Тогда ∠ОСА = 180°-45°-106° = 29°, а ∠С = 2·29° = 58°.
По сумме острых углов ∠А = 90° -58° = 32°.
<ABC=zACB(Т.к. углы при основании равнобедр. треуг.)=30° <BAC=180-30*2=120°
a)AB * AC = 8 * 8 * cos120 = 64 * (-cos60) 64 * (-) = -32
b) Т.к. DE соединяет середины двух сторон.значит,DE-средняя линия равнобедренного треугольника ABC → DE||BC и DE=0.5BC По теореме синусов:
BC AB
sin120 sin30
BC
AB * sin120
sin30
BC BC = 8√3 8* 2
DE=4√3 BC * DE = 8√3 * 4√3 * cos0 1 €96 - 32 * 3 *
с)Если отложить от одной точки вектора АВ и ВС,то образуется угол = 180-30=150°(Просто продолжаешь AB и находишь смежный угол)
AB* BC = = 8 * 8√3* cos150 = 64√/3* *
(- = -32 * 3 = -9