Основные черты растительности тундры: отсутствие древесного яруса, большая роль низкорослых мелкодревесных долгоживущих, часто вечнозелёных растений – от кустарников и стлаников до стелющихся кустарничков и стланичков. Растут тундровые растения очень долго – у полярной ивы побеги удлиняются за год на 1–5 мм и дают только по 2–3 листа, а лишайники нарастают всего на 1–3 мм за год. Этим объясняется чрезвычайная ранимость тундр. Широко распространены травянистые многолетники (корневищные, кочкообразующие, подушковидные) с укороченными стеблями, кустарнички с деревянистыми стеблями: голубика, черника, брусника и карликовые ивы и берёзки. Двудольные травянистые растения имеют крупные, яркоокрашенные цветы, зацветают практически одновременно, превращая некоторые участки тундры в гигантские цветочные клумбы. Большинство тундровых видов растений характеризуется максимальной активностью в данной зоне, составляя арктический элемент флоры. Велико значение мхов и лишайников, образующих типичные для тундр сообщества с мелкодревесными растениями. Возраст накипных лишайников исчисляется сотнями и даже тысячами лет.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.