У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
От противного: Пусть плоскость бета не пересекает прямую а, тогда эта прямая параллельна плоскости бета, следовательно в плоскости бета найдется прямая b, параллельная прямой а. Так как плоскость альфа параллельна плоскости бета, а прямая b лежит в плоскости бета, то в плоскости альфа найдется прямая d, параллельная прямой b. Так как прямая а пересекает плоскость альфа, то эта прямая не параллельна прямой d. Имеем три прямых: a||b, b||d, но a не параллельна d. Получили противоречие, которое доказывает, что бета пересекает прямую а.
От противного: Пусть плоскость бета не пересекает прямую а, тогда эта прямая параллельна плоскости бета, следовательно в плоскости бета найдется прямая b, параллельная прямой а. Так как плоскость альфа параллельна плоскости бета, а прямая b лежит в плоскости бета, то в плоскости альфа найдется прямая d, параллельная прямой b. Так как прямая а пересекает плоскость альфа, то эта прямая не параллельна прямой d. Имеем три прямых: a||b, b||d, но a не параллельна d. Получили противоречие, которое доказывает, что бета пересекает прямую а.