Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
1) так как диагональ ромба является биссектрисой угла, а угол между диагональю и стороной равен 45 градусов, то весь угол для которго данная диагональ является биссектрисой равен 2 данным углам, т.е. 45 * 2 = 90 градусов, а так как в ромбе две пары равных углов и сумма одной из этой пары равна 90 + 90 = 180 градусов а сумма углов в ромбе равняется 360 градусо то сумма углов другой пары равняется 360 - 180 = 180 градусов а так как в этой паре два равных угла, то каждый угол равен 180/2 = 90 градусов.
Так как дан ромб - то все стороны равны и мы доказали что все углы прямые, следовательно этот ромб-квадрат
2)Так как АЕ- биссектриса угла АВД, то треугольник АВЕ-равнобедренный так как в параллелограмме6 биссектриса отсекает равнобедренный треугольник. следовательно АВ = АЕ, а так как АВ = 7, то и АЕ=7.
ВС = АЕ + ЕС = 7 + 3 = 10
так как АВСД - параллелограмм то АВ = СД и ВС = АД, следовательно АВ = СД = 7 и ВС = АД = 10.
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
1) так как диагональ ромба является биссектрисой угла, а угол между диагональю и стороной равен 45 градусов, то весь угол для которго данная диагональ является биссектрисой равен 2 данным углам, т.е. 45 * 2 = 90 градусов, а так как в ромбе две пары равных углов и сумма одной из этой пары равна 90 + 90 = 180 градусов а сумма углов в ромбе равняется 360 градусо то сумма углов другой пары равняется 360 - 180 = 180 градусов а так как в этой паре два равных угла, то каждый угол равен 180/2 = 90 градусов.
Так как дан ромб - то все стороны равны и мы доказали что все углы прямые, следовательно этот ромб-квадрат
2)Так как АЕ- биссектриса угла АВД, то треугольник АВЕ-равнобедренный так как в параллелограмме6 биссектриса отсекает равнобедренный треугольник. следовательно АВ = АЕ, а так как АВ = 7, то и АЕ=7.
ВС = АЕ + ЕС = 7 + 3 = 10
так как АВСД - параллелограмм то АВ = СД и ВС = АД, следовательно АВ = СД = 7 и ВС = АД = 10.
Равсд = АВ + ВС + СД + АД = 2АВ + 2СД = 2* 7 + 2*10 = 14 + 20 = 34 см.
ответ: Равсд = 34 см