відрізки АВ і СД перетинаються в точці О, а прямі АС і ВД лежать у паралельних площинах .знайдіть довжину Сд якщо АВ=5 см, СО:ОД=2:3. обгрунтуйте розміщення АС і ВД
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
BH ┴ AC ;O =CD ⋂ BH.
<BOC _?
Пусть вторая высота BH ,H∈[ AC ] .
Из прямоугольного (<BHC =90°) треугольника BHC <HBC =90° -<HCB =
90° -(<HCO +<BCO) * * * 90° -( =<ACD +<BCD) * * *
=90° -(25° +40°) =90° -65°=25°.
Из треугольника BOC :<BOC =180° -(<BCO +<OBC)
* * *=180°-(<BCD+<OBC) * * * =180°-(40°+25°) =180°-65°=115°.
* * * * * * * * * *
<BOC = <OHC +<HCO (как внешний угол треугольника OHC).
или иначе
<BOC = <BHC +<ACD =90° +25° =115° .
Нужно рассматривать еще вариант <A > 90°.