Пусть ABC - исходный равносторонний треугольник. Обозначим за D,E,F центры квадратов, построенных на сторонах AB, BC, AC соответственно. Распишем площадь шестиугольника как сумму площадей треугольников, его составляющих: S=ADB+BEC+AFC+ABC. Первые 3 площади равны между собой. В построенных квадратах сторона также равна a, тогда диагональ равна a√2, а половина диагонали (в частности, AD и DB) a√2/2. Заметим, что угол ADB прямой, тогда площадь треугольника ADB равна 1/2*a√2/2*a√2/2=a²/4. Значит, суммарная площадь первых трёх треугольников равна 3a²/4. Площадь равностороннего треугольника со стороной a равна √3a²/4, тогда площадь шестиугольника равна a²/4+√3a²/4=(√3+1)a²/4.
1. <C=180-130=50° Поскольку углы при основании равнобедренного треугольника равны, то <A=<C=50° <B=180-<A-<C=180-50*2=80°
2. <C=180-100=80° Примем угол А за х, тогда угол В будет 3х. Зная, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним, запишем: <A+<B=100 x+3x=100 4x=100 x=25 <A=25°, <B=3*25=75°
3. Углы при основании равнобедренного треугольника равны. Значит <A=<B=(180-<C):2=(180-100):2=40° Поскольку биссектрисы углов А и В делят их пополам, <DAB=<DBA=40:2=20° <ADB=180-20*2=140°
Поскольку углы при основании равнобедренного треугольника равны, то
<A=<C=50°
<B=180-<A-<C=180-50*2=80°
2. <C=180-100=80°
Примем угол А за х, тогда угол В будет 3х. Зная, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним, запишем:
<A+<B=100
x+3x=100
4x=100
x=25
<A=25°, <B=3*25=75°
3. Углы при основании равнобедренного треугольника равны. Значит
<A=<B=(180-<C):2=(180-100):2=40°
Поскольку биссектрисы углов А и В делят их пополам,
<DAB=<DBA=40:2=20°
<ADB=180-20*2=140°