В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
gogoja
gogoja
30.10.2020 18:39 •  Геометрия

В каком отношении разделит биссектриса острого угла прямоугольного равнобедренного треугольника противоположный катет считая от вершины прямого угла

Показать ответ
Ответ:
gluilivti
gluilivti
21.05.2020 16:30

Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.

Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .

Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .

Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).

Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота