В конус, высота которого равна 8 дм и радиус основания 6 дм, вписана правильная треугольная призма, боковыми гранями которой являются квадраты. Найдите длину бокового ребра этой призмы.
Плоскости пересекаются по прямым линиям. Две параллельные плоскости пересекаются третьей по параллельным прямым.
Нам даны три точки секущей плоскости, пересекающей куб: E, F и G, расположенные на ребрах АВ, AD и DD1 соответственно.
Прямая EF, принадлежащая секущей плоскости и грани АВСD куба пересекает грань куба DD1C1C в точке Q, а грань куба AA1B1B в точке R.
Проведя прямую QG до пересечения с ребром D1C1, получим точку сечения Н.
Теперь можно провести НI параллельно EF и IK параллельно GF => получим все точки сечения.
Но можно построить недостающие точки P и S (построение понятно из рисунка) и провести прямые SI (через Н) и РК (через Е). Получим то же самое сечение, которое в силу симметричности точек является правильным шестиугольником.
Сечение - правильный шестиугольник.
Объяснение:
Плоскости пересекаются по прямым линиям. Две параллельные плоскости пересекаются третьей по параллельным прямым.
Нам даны три точки секущей плоскости, пересекающей куб: E, F и G, расположенные на ребрах АВ, AD и DD1 соответственно.
Прямая EF, принадлежащая секущей плоскости и грани АВСD куба пересекает грань куба DD1C1C в точке Q, а грань куба AA1B1B в точке R.
Проведя прямую QG до пересечения с ребром D1C1, получим точку сечения Н.
Теперь можно провести НI параллельно EF и IK параллельно GF => получим все точки сечения.
Но можно построить недостающие точки P и S (построение понятно из рисунка) и провести прямые SI (через Н) и РК (через Е). Получим то же самое сечение, которое в силу симметричности точек является правильным шестиугольником.
Грани правильного тетраэдра - равносторонние треугольники.
Их биссектриса является и высотой и медианой.
В сечении образуется равнобедренный треугольник, одна сторона которого равна ребру тетраэдра, две других - высоты грани.
Высота грани h = a*cos 30° = a√3/2 = 5√3/2.
Площадь сечения можно определить или 1) по формуле Герона, или 2) через высоту сечения.
1) Полупериметр p = 6,83013. Площадь S = √(p(p-a)(p-b)(p-c).
Поставив данные, получаем:
S = √( 6,83013*1,830123*2,5*2,5) = √78,125 = 8,83883.
2) Высота сечения из середины ребра на противоположное ребро равна:
h(c) = √(h² - (a/2)²) = √(18,75 - 6,25) = √12,5 ≈ 4,33013.
S = (1/2)*h(c)*a = (1/2)*5*4,330135 = 8,83883.