В кубе ABCDA1B1C1D1 построить сечение плоскостью, проходящей через ребра АА1 и СС1 2)В кубе ABCDA1B1C1D1 построить сечение плоскостью, проходящей через концы трех ребер выходящих из одной вершин 3)Построить угол между ребром АS и плоскостью основания ABC 4)Построить угол в пирамиде между боковой гранью (АSD) и плоскостью основания АВСD
углы AOB и DOC равны как вертикальные
углы BAO и OCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей AC, аналогично равны и углы ABO и ODC.
Следовательно треугольники ABO и CDO подобны по трем углам.
тогда АО:ОС=ВО:ОД (отношение соответственных сторон) - а)
также AB:DC=OB:DO, следовательно AB=DC*OB/DO=25*9/15=15
2
АВ/KM=8/10=0,8
BC/MN=12/15=0,8
AC/NK=16/20=0,8
Треугольники АВС и KMN - подобные (по третьему признаку).
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
ответ: 0,64.
Объяснение:
Дано: ΔАВС;
АК и СЕ - медианы;
СМ = МЕ; АО = ОК;
АС = а
Найти: ОМ.
1. СМ = МЕ; АО = ОК
Обратная теорема Фалеса: Если две или более прямых отсекают от двух других прямых равные или пропорциональные отрезки, то они параллельные. Утверждение справедливо, независимо от того, параллельные прямые или пересекаются.⇒ ЕК || ОМ || АС
2. Рассмотрим АВС.
АЕ = ЕВ; СК = КВ (АК и СЕ - медианы)
⇒ ЕК - средняя линия (по определению)
Средняя линия равна половине основания.⇒
3. Рассмотрим ΔАЕК.
АО = ОК; ОН || ЕК.
Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок - средняя линия этого треугольника.⇒ ОН - средняя линия ΔАЕК.
4. Рассмотрим ΔЕКС.
СМ = МЕ; МР || ЕК;
⇒МР - средняя линия ΔЕКС.
5. Рассмотрим ΔАЕС.
АН = НЕ (п.3); НМ || AC
⇒ НМ - средняя линия ΔАЕС.
6. Рассмотрим ΔАКС.
КР = РС (п.4); ОР || АС;
⇒ ОР - средняя линия ΔАКС.
7.