В квадрате 3 × 3 клетки провели два отрезка так, как это показано на рисунке. Докажите, что части этих отрезков, находящиеся внутри закрашенных клеток, равны.
1) В евклидовой геометрии параллельными прямыми называются прямые, которые лежат в одной плоскости и не пересекаются
2) Секущая — это прямая, которая пересекает кривую в двух точках, а также прямая, пересекающая две другие компланарные прямые в двух разных точках.
3) извени но я ответа и не знаю(❤
4)Признаки параллельности прямых
Если сумма внутренних односторонних углов при двух прямых и секущей равна 180∘, то эти две прямые параллельны. 3. Если соответственные углы при двух прямых и секущей равны, то эти две прямые параллельны.
5)Две прямые, лежащие на одной плоскости, либо имеют только одну общую точку, либо не имеют ни одной общей точки.
В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
вначале допущение и принять то, которое требовалось доказать.
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
1) В евклидовой геометрии параллельными прямыми называются прямые, которые лежат в одной плоскости и не пересекаются
2) Секущая — это прямая, которая пересекает кривую в двух точках, а также прямая, пересекающая две другие компланарные прямые в двух разных точках.
3) извени но я ответа и не знаю(❤
4)Признаки параллельности прямых
Если сумма внутренних односторонних углов при двух прямых и секущей равна 180∘, то эти две прямые параллельны. 3. Если соответственные углы при двух прямых и секущей равны, то эти две прямые параллельны.
5)Две прямые, лежащие на одной плоскости, либо имеют только одну общую точку, либо не имеют ни одной общей точки.
В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
вначале допущение и принять то, которое требовалось доказать.
извени но это всё что я знаю ✨
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.