В окружность радиуса R с центром О вписан треугольник АВС (угол А = α, угол В = β, α + β < 90°). Вокруг треугольника АОВ описана окружность. Найдите ее радиус. (Указание: используйте формулу .
Как я понимаю, в первых двух номерах нужно найти остальные величины сторон треугольников.
Вариант 1
1) по теореме Пифагора (крадрат гипотенузы равен сумме квадратов катетов):
АМ = √64+225 = √289 = 17
2) Аналогично по той же теореме:
НВ = √1681 - 81 = √1600 = 40
3) Сначала рассмотрим треугольник АВС. Найдём его гипотенузу: АС = √49+576 = √625 = 25
Так как это прямоугольник, значит его диагонали равны (AC = BD), и точкой пересечения делятся пополам. Следовательно, BD = 2BO, значит BO = 25:2 = 12,5.
Вариант 2
1) Аналогично первому варианту:
СК = √49+576 = √625 = 25
2) АВ = √1369 - 1225 = √144 = 12
3) Точка О является центром пересечения диагоналей, следовательно, если АС = 16, то АО = 8. По теореме Пифагора найдём ВО:
Объяснение:
1) Дано:
АВC - прямоугольник
AB = 13; DB = 3; DC - высота = 4
Найти : АС - х
АВ - 13 (по усл); DB - 3(по усл) => АD = 10
Рассмотрим прямоугольник СВD, в нем:
ВD = 3 (по усл); DC = 4 (по усл);
Найдем гипотенузу ВС, по теореме Пифагора:
ВС^2 = ВD^2+DC^2 = 3^2 + 4^2 = 9 + 16 = корень из 25 = 5
Рассмотрим прямоугольник АВС, в нем:
АВ = 13 ( по усл); ВС = 5(см.пункт выше);
Найдем АС через теорему Пифагора:
АС^2 = АВ^2 - ВС^2 = 13^2 - 5^2 = 169 - 25 = корень из 144 = 12
ответ: х = 12
2) Дано:
АВС - прямоугольник; DC - высота
угол DCB = 30°; DB = 4
Найти : DC - x; AC - y
Рассмотрим прямоугольник DCB, в нем
угол DCB - 30°; DB = 4 => BC = 2 × 4 = 8 ( так как катет лежащий на против угла в 30° равен половине гипотенузы)
Найдем DC через теорему Пифагора:
DC^2 = BC^2 - DB^2 = 8^2 - 4^2 = 64 - 16 = корень из 49 = 7
Рассмотрим прямоугольник ADC, в нем:
Угол DCA = 90° - 30° = 60°
Угол АDC = 90° (по усл.)
Угол DAC = 180° - (90° + 60°) = 30°
DC = 7 (см.пункт.выше) =>
=> АС = 7 × 2 = 14 (так как катет лежащий на против угла в 30° равен половине гипотенузы)
ответ: х = 7; у = 14
4) Дано:
ABCD - паралелаграмм; BE - высота
угол ABE = 45°; AE = 5
Найти: DC - х
Рассмотрим прямоугольник АBE, в нем:
угол ABE = 45°
угол ВАЕ = 45° (как дополнение углов треугольника до 180°)
АЕ = 5 =>
=> прямоугольник АBE - равнобедренный, где ВЕ = АЕ = 5
Найдем по теореме Пифагора АВ:
АВ^2 = АЕ^2 + ВЕ^2 = 5^2 + 5^2 = 25 + 25 = корень из 50 = 5 корней из 2
АВ = СD = 5 корней из 2 ( противоположные стороны паралелаграмма равны)
ответ: х = 5 корней из 2
6) Дано:
АСВ - прямоугольник; CD - высота
AC = 15; CB = 20
Найти : СD - x; DB - y
Найдем DB(у) через теорему Пифагора
DB^2 = СВ^2 - СD^2 = 20^2 - x^2 = корень из 400 - x^2
Найдем СD(x) через теорему Пифагора
СD^2 = CB^2 - DB^2 = 20^2 - y^2 = корень из 400 - y^2
ответ: у = корень из 400 - x^2; х = корень из 400 - y^2
Как я понимаю, в первых двух номерах нужно найти остальные величины сторон треугольников.
Вариант 1
1) по теореме Пифагора (крадрат гипотенузы равен сумме квадратов катетов):
АМ = √64+225 = √289 = 17
2) Аналогично по той же теореме:
НВ = √1681 - 81 = √1600 = 40
3) Сначала рассмотрим треугольник АВС. Найдём его гипотенузу: АС = √49+576 = √625 = 25
Так как это прямоугольник, значит его диагонали равны (AC = BD), и точкой пересечения делятся пополам. Следовательно, BD = 2BO, значит BO = 25:2 = 12,5.
Вариант 2
1) Аналогично первому варианту:
СК = √49+576 = √625 = 25
2) АВ = √1369 - 1225 = √144 = 12
3) Точка О является центром пересечения диагоналей, следовательно, если АС = 16, то АО = 8. По теореме Пифагора найдём ВО:
ВО = √289 - 64 = √225 = 15. ВD = 2BO, значит BD = 15*2 = 30.