Обозначим трапецию как ABCD. Сторона перпендикулярная основаниям АВ, ВС - верхнее основание, AD - нижнее основание, CD - большая боковая сторона. Опустим перпендикуляр из вершины С к основанию AD и отметим точку пересечения как Е. Получили прямоугольный треугольник СЕВ. По теореме Пифагора находим СЕ СЕ²=CD²-DE² DE=AB-AE (а АЕ=ВС, так как трапеция прямоугольная) DE=17-5=12 см CE²=15²-12²=81 см Теперь из треугольника АВС можем найти диагональ АС по теореме Пифагора: АС²=АВ²+ВС² AB=СЕ, поэтому можем записать АС²=АВ²+СЕ² АС²=81+5²=81+25=106 АС=√106
Точка, равноудаленная от вершин квадрата, находится на перпендикуляре к плоскости квадрата, проходящем через точку пересечения его диагоналей.
Действительно, если SО - перпендикуляр к плоскости, то прямоугольные треугольники SОА, SОВ, SОС, SОD равны по двум катетам (SО - общий катет, ОА = ОВ = ОС = ОD как половины равных диагоналей),
СЕ²=CD²-DE²
DE=AB-AE (а АЕ=ВС, так как трапеция прямоугольная)
DE=17-5=12 см
CE²=15²-12²=81 см
Теперь из треугольника АВС можем найти диагональ АС по теореме Пифагора:
АС²=АВ²+ВС²
AB=СЕ, поэтому можем записать АС²=АВ²+СЕ²
АС²=81+5²=81+25=106
АС=√106
Объяснение:
Точка, равноудаленная от вершин квадрата, находится на перпендикуляре к плоскости квадрата, проходящем через точку пересечения его диагоналей.
Действительно, если SО - перпендикуляр к плоскости, то прямоугольные треугольники SОА, SОВ, SОС, SОD равны по двум катетам (SО - общий катет, ОА = ОВ = ОС = ОD как половины равных диагоналей),
значит и SА = SВ = SС = SD.
АО = АС/2 = AD√2/2 = 3√2/2 см
ΔSАО: ∠SОА = 90°, по теореме Пифагора
SА = √(SО² + АО²) = √(16 + 4,5) = √20,5 = (√82)/2 см