1)Радиус шара, вписанного в куб, равен половине ребра куба Верно, шар касается параллельных плоскостей куба в точках, которые лежат на перпендикулярных прямых, т.е. эти две точки образуют диаметр. 2)Радиус окружности, вписанной в ромб, равен половине меньшей диагонали ромба Неверно, Радиус вписанной окружности ромба, равен высоте из центра окружности или корню из произведения сторон, на которые высота разбивает основание 3) Радиус шара, вписанного в конус, равен половине высоты конуса Неверно, радиус шара равен (AH-AG)/2 где AH - высота конуса, а AG - отрезок высоты с точкой G, лежащей на окружности шара Вокруг любой четырёхугольной пирамиды можно описать конус Верно, если все боковые ребра пирамиды равны,то вокруг пирамиды можно описать конус (Четырёхугольная пирамида имеет равные боковые ребра)
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
Первое и четвёртое утверждение
Объяснение:
1)Радиус шара, вписанного в куб, равен половине ребра куба
Верно, шар касается параллельных плоскостей куба в точках, которые лежат на перпендикулярных прямых, т.е. эти две точки образуют диаметр.
2)Радиус окружности, вписанной в ромб, равен половине меньшей диагонали ромба
Неверно, Радиус вписанной окружности ромба, равен высоте из центра окружности или корню из произведения сторон, на которые высота разбивает основание
3) Радиус шара, вписанного в конус, равен половине высоты конуса
Неверно, радиус шара равен (AH-AG)/2 где AH - высота конуса, а AG - отрезок высоты с точкой G, лежащей на окружности шара
Вокруг любой четырёхугольной пирамиды можно описать конус
Верно, если все боковые ребра пирамиды равны,то вокруг пирамиды можно описать конус (Четырёхугольная пирамида имеет равные боковые ребра)
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан