В окружности с центром о проведены взаимно перпендикулярные хорды мк и кн, мк не равно кн. Точка А - середина хорды мк, а точка с - середина хорды КН. Укажите верные утверждения
обозначим вершины трапеции А В С Д с высотой СН, с основаниями ВС и АД и средней линией КЕ.
СН делит основании АД:
обозначим эти пропорции как 3х и 2х. СН делит АД так, что АН=ВС=3х. Составим уравнение используя формулу нахождения средней линии трапеции:
4х=12
х=12÷4=3
тогда ВС=3×3=9см, АД=3х+2х=5х=5×3=15см
ОТВЕТ: ВС=9см, АД=15см
ЗАДАЧА 71
Обозначим вершины трапеции А В С Д с основаниями ВС и АД и диагональю АС. Рассмотрим ∆АВС. Если АВ=ВС, то ∆АВС - равнобедренный, поэтому <ВАС=<ВСА, а также <ВСА=<САД как внутренние разносторонние, поэтому диагональ АС является биссектрисой угла А, значит угол А=23×2=46°. Сумма углов трапеции прилегающих к одной боковой стороне составляют 180°, поэтому <В=<С=180–46=134°. Так как трапеция равнобедренная то <А=<Д=46°, <В=<С=134°
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240
Объяснение:
ЗАДАЧА 70
обозначим вершины трапеции А В С Д с высотой СН, с основаниями ВС и АД и средней линией КЕ.
СН делит основании АД:
обозначим эти пропорции как 3х и 2х. СН делит АД так, что АН=ВС=3х. Составим уравнение используя формулу нахождения средней линии трапеции:
4х=12
х=12÷4=3
тогда ВС=3×3=9см, АД=3х+2х=5х=5×3=15см
ОТВЕТ: ВС=9см, АД=15см
ЗАДАЧА 71
Обозначим вершины трапеции А В С Д с основаниями ВС и АД и диагональю АС. Рассмотрим ∆АВС. Если АВ=ВС, то ∆АВС - равнобедренный, поэтому <ВАС=<ВСА, а также <ВСА=<САД как внутренние разносторонние, поэтому диагональ АС является биссектрисой угла А, значит угол А=23×2=46°. Сумма углов трапеции прилегающих к одной боковой стороне составляют 180°, поэтому <В=<С=180–46=134°. Так как трапеция равнобедренная то <А=<Д=46°, <В=<С=134°
ОТВЕТ: 46°, 134°