В окружности с центром в точке O проведена хорда AB Длина которой равна длине радиуса. Перпендикулярно этой хорде проведен радиус ОК. Радиус ОК и хорда АВ пресекаются в точке М. Длина отрезка АМ равна 14,2 см.
А) Постройте чертеж по условию задачи
Б) Найдите длину хорды АВ
В) Вычислите длину радиуса
г) Найдите периметр треугольника АОВ
Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам.
В правильном треугольнике высота является также медианой и биссектрисой.
Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис.
Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R).
R= h·2/3
R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2.
S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
S= 3п (см^2)
a= √(3·3п/п) <=> a= 3 (см)