В основі піраміди лежить прямокутний трикутник з катетом 6 см і гіпотенузою 12 см. Знайти об’єм піраміди, якщо всі бічні ребра нахилені до площини основи під кутом 30 градусів.
Так как ось правильной усеченной пирамиды совпадает с осью соответствующей полной пирамиды, то OO1 является высотой пирамиды и точки О и О1 являются центрами окружностей, вписанных в квадраты ABCD и A1B1C1D1. Тогда проведем ОК ⊥ AD и
OK1 ⊥ A1D1.
Значит, ОК и O1K1 — радиусы вписанных окружностей
Далее, проведем К1Н ⊥ KO. Из прямоугольника K1O1OH следует, что ОК = О1К1=1 м. Так что KH = KO OH = 4 1 = 3 (м.)
Далее, из прямоугольного ΔKK1H найдем по теореме Пифагора:
Дан треугольник АВС: АВ=ВС. O- центр вписанной окружности ВО=34 см, ОН=16 см.
ВН - высота равнобедренного треугольника. ВН=50 см
К, Т.Н- точки касания окружности со сторонами треугольника.
ОК,ОН,ОТ - радиусы вписанной окружности
Найти площадь треугольника.
Решение.
Высота равнобедренного треугольника является и биссектрисой и медианой.
Значит АН=НС
Угол АВН равен углу СВН.
Треугольники КВО и ВОТ равны между собой по катету (ОК=ОТ) и острому углу.
Из равенства треугольников ВК=ВТ
По теореме Пифагора ВТ²=ВО²-ОТ²=34²-16²=(34-16)(34+16)=18·50=900
ВТ=30 см
ВК=ВТ=30 см
Центр вписанной окружности- точка пересечения биссектрис.
Треугольник равнобедренный, угол А равен углу С.
Биссектрисы АО и СО делят эти углы пополам.
Углы КАО, НАО, ТСО, НСО равны между собой.
И треугольники КАО, АОН, НОС, СОТ равны между собой по катету и острому углу.
ОК=ОН=ОТ= r - радиусу вписанной окружности.
Из равенства треугольников АК=АН=НС=СТ= х
Рассмотрим треугольник АВН.
По теореме Пифагора АВ²=АН²+ВН²
(30+х)²=х²+50²
900+60х+х²=х²=2500,
60х=1600
х=80/3
АН=80/3
S=1/2 АС·ВН= АН·ВН=80/3 · 50= 4000/3 кв. см
Так как ось правильной усеченной пирамиды совпадает с осью соответствующей полной пирамиды, то OO1 является высотой пирамиды и точки О и О1 являются центрами окружностей, вписанных в квадраты ABCD и A1B1C1D1. Тогда проведем ОК ⊥ AD и
OK1 ⊥ A1D1.
Значит, ОК и O1K1 — радиусы вписанных окружностей
Далее, проведем К1Н ⊥ KO. Из прямоугольника K1O1OH следует, что ОК = О1К1=1 м. Так что KH = KO OH = 4 1 = 3 (м.)
Далее, из прямоугольного ΔKK1H найдем по теореме Пифагора:
где КК1 — апофема.
Далее, площадь полной поверхности
ответ: 168 м2.
Объяснение
удачи!