1. Диагонали ромба взаимно перпендикулярны и делят его углы пополам. Значит<MOK - прямой, <MKO = 80:2=40° Зная, что сумма острых углов прямоугольного треуг-ка КОМ равна 90°, находим угол КМО: <KMO=90-<MKO=90-40=50°
2 а). Рассмотрим треугольник АВМ. Он равнобедренный по условию (АВ=ВМ), значит, углы при его основании АМ равны между собой: <BAM=<BMA <BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ, но <BAM=<BMA, значит <BAM=<DAM, т.е. АМ - биссектриса угла BAD. б). Поскольку АВ=ВМ=8 см, то ВС=8+4=12 см Р = 2АВ+2ВС=2*8+2*12=40 см
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Доказательство
Пусть α и β - данные плоскости, a1 и a2 – прямые в плоскости α, пересекающиеся в точке A, b1 и b2 – соответственно параллельные им прямые в плоскости β. Предположим, что плоскости α и β не параллельны, а значит пересекаются по некоторой прямой с. По теореме о признаке параллельности прямой и плоскости прямые a1 и a2, как параллельные прямые b1 и b2, параллельны плоскости β, и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости α через точку A проходят прямые a1 и a2, параллельные прямой с. Это невозможно по аксиоме параллельных. Что противоречит предположению. Теорема доказана.
Зная, что сумма острых углов прямоугольного треуг-ка КОМ равна 90°, находим угол КМО:
<KMO=90-<MKO=90-40=50°
2 а). Рассмотрим треугольник АВМ. Он равнобедренный по условию (АВ=ВМ), значит, углы при его основании АМ равны между собой:
<BAM=<BMA
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ, но <BAM=<BMA, значит <BAM=<DAM, т.е. АМ - биссектриса угла BAD.
б). Поскольку АВ=ВМ=8 см, то ВС=8+4=12 см
Р = 2АВ+2ВС=2*8+2*12=40 см
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Доказательство
Пусть α и β - данные плоскости, a1 и a2 – прямые в плоскости α, пересекающиеся в точке A, b1 и b2 – соответственно параллельные им прямые в плоскости β.
Предположим, что плоскости α и β не параллельны, а значит пересекаются по некоторой прямой с. По теореме о признаке параллельности прямой и плоскости прямые a1 и a2, как параллельные прямые b1 и b2, параллельны плоскости β, и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости α через точку A проходят прямые a1 и a2, параллельные прямой с. Это невозможно по аксиоме параллельных. Что противоречит предположению. Теорема доказана.